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** in the near ground layexr of air with indifferent strati-

O

ficatinn are investigated, As an example the diffusion of
smoke at ambient temperature from a chimney is examined.

" The generalised expression for diffusion is indicated for

cases with arbitrary temperature stratification of the air.(z

Since the diffusion of a substance in a turbulent
medium comes about because of turbulent fluctuations of wind
velocity, the size of which is limited (and under the actual
conditions in the lowest layers of the atmosphere is rather
small) the propsgation of the substance in.the atmosphere
takes place with a limited velocity and in a number of cases
(e.qg., after the release of an instantaneous point source)

“the propagation front of the substance can be observed,

For describing such cases the common expression fox diffu-
sion having a parabolic character _is shown to be inappro-

‘priate, In our earlier paper [1] a system is investigated

in which allow.nce 1s clearly made for the final size of the
turbulent fluctuations, and to describe tu=bulent diffusion
we derive a system of equations of the hyperbolic type,

The simplest version of such equations for the case of
diffusion in the vertical direction z only, is of the form

% = afqs - q) - §ua1, $R = alqi- qa) azudas e (1)

vhere qi. and qz2 are the prcobability densities for the co-
ordinate z of the diffusing particles moving respectively
upwards and downwards; t is time; v is the size of the tur-
bulent fluctuations; z the velocity components; a is the-
frequency of change of direction of movement by the diffusing
particles (freguency of “"dispersion"). An analagous equation
was proposed earlier in the work of V, A, Fok B. I, Davydov.
and E. S, Lyapin quoted in _reference [1] and also in the
article by S. Goldstein [2] published in 1951, and is ex-
tremely close in content to Fok's work in 1926, Equations (1)
correspond to the description of turbulent movements in the
direction z as the aggregate of "streams" having flow rates

u and ~-u, the diffusing particle transferring from streams

of one type to streams of another type on an average with
frequency a, :

Examining only stationary turbulence we may consider
the values u and a independent of time t, Introducing the

- density of the particles q = qi + Qz and the density oi the

turbulent particle stream Q = (q; - qz) we reduce-eguations- .
(1) to the form . S .

[P

Solutions of the hyperbolic equation of turbulent flow -




3 aQ _- 3¢ _ 2 .
—5—%+-58,-0, 53 +' 2aQ--u5;uq. ....,.(2)

‘ Accoxding to the first of these equations it is poss=~
‘ible to put q = %%, Q = -%% vhere Y(z,t) will have the mean-
ing of an integral function of probability distribution for
the co-ordinate z of the diffusing particle, ' The second.

. ~ ‘equation (2) takes the form of a telegraph equation (3):-
S 3 o8¢ | 83y by _ ' .
'o _ . - B - c. R UB—Z‘UB‘Z' - -—-zat - 2&'6‘{ = O. coee (3)

- . The problem consists in the determination of the co-
efficients of this equation u{z) and a{z) for different con-
ditions in the atmosphere and in solving equation (3) with
given initial and boundary conditions,

Paper [1] examined the case of diffusion in the field
"of homogeneous turbulence (u and a constants) in the lowest
layer of the atmosphere with indifferent stratification,
In the piesent paper we shall examine diffusion in the
" ground layer of the atmosphere withindifferent stratifica=~ |
tion in more detail than was done in reference [1]; we .
:> : " shall define the determination of the Riemann function for
'~ cquation .(2) in this case and examine an example of prac-
tical. importance, i,e, the diffusion of smoke at ambient
- temperature from a chimney. Furthermore, we shall show
how to determine ithe coefficients u(z) and a(z) for the .-
ground layer of the atmosphere with arbitrary temperature
stratification and analyse equation (3) for these conditions

* . 1, Diffusion in a Thermally Homogeneous Ground Layer
' : of the Atmosphere :

he stationary turbulent process in the grcund
layer of the atmosphere with indifferert stratification is
~ characterised by a unique dimensional parameter - the
- friction velocity v¥, so that evexry parameter of turbulence
. having the dimensions of velocity must be proportional to
v¥*, the characteristic dimension of length must be propor-
tional to height z, and the characteristic dimension of tim

‘must_be proportional to f&- Consequently in this case

. - . * : . *
u = }\V*p a = A!z_' ‘ 0000(4




wnere N and A are numerical constants. The constant X .
should be determined from experiments as a ratio of the mean
square value of the vertical fluctuations of velocity to y#*;

the experimental data in our arrangement shew that the valUe -

of N is near to unity. The constant A may be determined by

taking advantage of the steady-state solution of equations

(2), which has the form

aq-= ' . N2 284Q yaaZi
. Q = const, g(zz) qlz1) = Z2-10g77.

We note that the ;oefficieht'f%§; in the logarithaic

formula for qlz) must, as-we know, equal ;8; whéie % is the.v

R 2 : ~‘ . .
Karman constant, Hence A = %;. Introducing into equation

(3) the dimensionless variables

Lo Ve, 2 L
y. T =?'\"'\',h—t':"', _ '. i '0000(5)

N

where h is some characteristic.height, we may re-wfité'this.;f“
equation in the form ‘ : . C

. 9%y 3%y 2¢ Y . - .
T " 5F T L ow = O e- (6)

.« wnere g = %% is a numerical constant, We are interested in

the solution of this equation in the range ¢>0, satisfying
the determined bcundary condition at the eaxrth s surface
{ =0, However, it is more convenient to consider not half

“"the range >0 but the whole range —<{<=s extending for this

purpose the field of turbulence into the region ¥<O with
symmetry maintaingd_with respect to the point { =0, If we

assume- tnat a = %;%;—, the corresponding coefficient in
equation (6) is of the form -%%T.

Let us restricéﬁourselves to seeking .a solutian of
equation (6), corresponding to an instantaneous point source
of diffusing substance at time t = O at the point z = h.. )
The initial conditions for the original equations (1) will

-4-




then take the form

.. aq(z, 0) =esd(z - n), Qz(z; 0) =¢228(z - h),

where €3, €2 are the probability of positive and negative
directions of Iinitial movement by the diffusing particle,
For example, particles of smoke being discharged frxom a
chimney move upwarzds initially so that in this case €3 =1,
ez =0, With the explosion of a shell in the air, on the

. other hand, the particles as a rule have no preferred direce
tion of initial movement; in this case we should assume
that €1 = €2 =%, The initial conditions formulated for

the function ¥ will thus be . ‘

9(() = ¥ (K, 0) =E(¢ - 1), ¢(C) = %E::o = (ea-— ex)(c -‘1),. eeesl?)
where E({) is an improper distribution of probzbilities, -
i,e,, the function is equal to zero when {<O and equal to
unity when €20, - -

Let us f%rst examine the simplest case of a ground
ievel source (h = 0). In this case the function ¥({, «)can

depend only on the ratio of its variables % =f = x#%;;'and
equation (6) takes the form -

2 7 )82 -
(¢ -1)a'gz+2(€+e)d =0

Cal

(the upper sign applies in the range £>0, the lower when .
E<0), Since the substance diffuses with a final velocity

u = Av¥, at the moment t it will be distributed according to -
the limits -Av¥t<zAW*t so that ¥(%) can be distinguished
from a constant only when [£|<|, and it must be that .
¥(-1-0) =0, V(+ 1+ 0) =1, The first integral of the
equation for ¥(t) takes the form U '

€
. ca__ (l-=2% when £>0

= 1 - -g
T ey (1) when 1<,




where c3, ca are constants of integration which must not -be
negative since the density of the diffusing substance
’ -4y _ ¥ (¢) . ative s
{z,t) = dz = ey 1S not negativ:, The expression for :
Y(%) whi~h satisies the .ondiiion. when § = % (1 + 0) has
. the form - :

_ caf1 - [g]rE '
' ¥ (x) {1"2eT'+'Jr«:‘{'/ when 0 < ¢ < 1,
."‘ .. B y ( = . cz 1 - E € .
. o s De T—_?-l[-é'}') yvhen -1£ E‘.< o.

At the point £ = 0 the fu.cgion ¥(g ) has the discontin-
2 the value of which has.

‘uity ¥(+ 0) - ¥(-0) =1 - 1 7 C2

- the meaning of that portion of the diffusing substance
existing at the moment t at the earth's surface. This
value does not vary with time and, naturally, may be equal
either to unity or to zero., —In the first case we get

ey =ca3 =0, i.,e. ¥(¥}) = E(¢) which denotes the absence of
diffusion, Rejecting this uninteresting case we will
assume c1 + €3 = 2e. Then in the semi-distribution ¥<0 the
portion of the diffusing substance-%% exists the whole time

C:pot varying with time and consequently equal to its initial

value €3. We thus get ¢z = 2ec€z, €1 = 2ece1. Finally we -
have o ' : ' : -

_ . 1 - €1 %¥§-£%+)Sﬁwhen 0<¢g<gt, .
.': ' : Y({?'= ez(%-}-{%*)e | when - 1 £ £ O, .....(8)

Here Y(T) is continuous at the point ¢ = O'(sincg ,
e + €3 = 1) but the density of the diffusing substance
qlz,t) undergoes a perturbation:

’ | 2ee : 2ee
al = 0, 8) = 5xh al + 0, 8) = o

AvFEL’

-

-6-



The existence of this disconcinuity is reasonable since
diffusion of the substance at_ithe point £ =0, at which the
YA

frequency of dispersion a = owlz] is infinitely great, is

_extremely difficult, By analogy the absence of discontin-
uities ‘in the function ¥(¢,t) at the "fronts" || =T is
explained, i.e. the equality to zero of the probabilities of

"finding the diffusing particles at poinis z = + Av¥t, In-
deed each particle discharged from a source z = 0 almost
certainly undergoes dispersion while still near the source
and consequently does not reach the "front'.

Wnhen es =1, €2 = 0 all the diffusing substance at any
moment in time is in the half range z>0 so thet this case
corresponds to the condition of "reflection" of the substance
-from the earth's surface, Then ' : "

’

o - €-1 . . B
C((Z, t) = :"“;‘,1?‘_-{ %‘%"";g é‘?’l, o S z S XV*t‘ .-00.(9)

The charactexr of distribution of the substance in height
. . - . A . s
depends here essentially on the number ¢ = H7y le.€. 0N the

ratio A, the size of the vertical fluctuations of wind speed
to the friction velocity, Theoretically there are two con-
ceivable forms of "front' for the diffusion of the substance,
If A>2#=0,8, i,e,, if £>1, then when approaching the “"front"
the concentration of the substanpg tends towards zero (since
"the frequency of dispersion a = %; Mg is then comparatively
small), so that the "front" does not appear as a surface of
sharp discontinuity. But if A2z, i.e, €<1, then when
approaching the "front" the concentration increases (since
the frequency of dispersion under these conditions is com-
paratively 'small), so that the "front" appears as a surface
of sharp discontinuity. Under actual conditions in the
grownd layer of the atmosphere it appears that the first of

" these cases is realised, i.e, the value g>1 applies.

- In the presence of a continuous line source of diffus-
ing substance perpendicular to the wind direction, and ne-
glecting horizontal dispersion in the wind direction, the
formula for the concentration is found by replacing time t
in (9) by &, where x is the co-ordinate along the wind
direction and U is the wind speed, considered constant, We
thus get ' : , :

e sy




(1 -wfg)

O e (T 0 fr
; XV*x ‘

The vertical profiles of concentrations at various dis-
*ances x from tbe source are seen to *esemble one another
and their form CnoIQCtGI‘SGd by the function
f(() (1 C)e"‘( "€ the graph of which with values
€ -= % 1, & is shown 1n rlgure 1.

- 2. Diffusion from an Elevated Source

The solution of equation (6) under arbitrary
initial conditions ¥(¢,0) = ¢(¢), <o~/~_° = ¢(¢) is supplied

by the Riemann rormula, whlch for the glven equation has the
form

.ZYK,11==9K -wv({g, 7; L -7, 0) + (€ + x)v(, %5 C + 5, O)

{+t
- o {plevie, w2 o) v g [{ie, w w0 :
o U T .
. oo ’ 3 )
O - 9——145;;-‘—»-91] Jaee. : veno(10)

Here v({{, ©; &', ') is the Riemann function, chazac~-
te1151n9 the lnfluence of & single “anulse" apo‘led at the
point ¢ _at moment <’ which cevelops ct the point € at
moment ©>1' In accordance with equation (6) the distur-
barrces OIOOqgate with un (dimensionless) speed, so that
the Riemann function dif e*s from zero only when
c—t'2|¢-¢'l. As a consequence of the independence of the
coefficicnts of the equation and time, it (the Riemann func-
tion) depends only on the difference of the variables t and
<!, Moreover, according to its meaning it cannot depend
on the value of h, which enters into the scales of measure-
ment of length and time, i.e., it can only depend on the
ratios of its variables., Consequently, the Riemann func- =~
tion in our case must take the form ‘

. ( l :
v (¢, T;IC'» ') = V(t -CT" < - T’);

O- _ ‘. 8-




where V(£,%’) differs from zero only when [ - E'| < 1,

(:) ' Moreover, from conclceratlons of symmetry it must be
that V(- g, ¢') =Vv(g, - ¢'), -

~ For €' and ©' the Riemann function satisfies an equa=-

- tion llnked to (6) i.e. obtainable from {6) oy substituting -

¢!, ' for C, T and changing the sign before the last term,
For V(¢, §’) this expression takes the form

. she - (e g v - ED(E - VB -0

For € A %' and © £ <! when ¢ and T the Riemann function
satisfies equation (6) giving for V(¢, €’) an equation
differing from that obtalned above by alteration of the
positions of € and §¥‘,. The difference of these two equa-
tions has the form

B S iy - (e ) <o

OE a( a{ C .oao(11)
<:> The required solution of this equation is clesrly determined
by the known conditions in the charactgristics o< equatlon
(6) i.e. in straight lines t -’ =+ {{ - ¢') or ( -¢! =
+ 1,
The indicated conditions for the function V(E, E') take
the form
: dlogV(t, £+ 1) ¢ dlooV(E + 1, &) _
) : dg TYEF I dg [EI(C + 1)'

whence are obtained the following values of the Riemann
function for the characteristics

when § < - 1,

when - 1 € ¢ €0,

o S h - T a2)

. =9~




Hence, in particular, it follows that the function
v(g, t’) is symmetrical with respect to its variables,

<:> The partxcu’a* solution (8) found above of equz.icn (6)
imme

P
.

diately per mlus determination of the values of it e
Riemann function V{g, £’) when £’ = 0, Actually, substi-
tuting in the Riemann formula (10) the initial conditions

(7) we get after sxmple re-axrangemen» with <1 + 43

Vg, w) = e (€ - - OV(E, S - 1) v e ‘- v(E, £en)
| T | ,%'"‘ 1 _
Ceezsay(S L) 5 E(:’ - -)[ E(E, )
->. ! . ‘-- 1 . .
¢ avE ¢ ) v N

-6--7'_—' i . ooo-'(la)

Proceeding in this formula {o the limit where h —- 0 we -

are satisfied that V(E, 0) is the item in solution (8)
corresponding to & ground instantaneous point source of the

admixture, which has the ccefficient Q&ﬁgiiﬁi .Eliminating
this item in formula (8) we obtain:

v{E, 0) =v(o, ) =(-}-§+§+)a | ees (14)

The complete expression for the Riemann functzon wzll

“be sought ln the form

lm+lzl-1' -' _1 - {x -g9)*
v(g, :) 1!EI+!£’I+ w(z), z = 4T

cees(15)

This expression possesses the requisite properti-»s of

symmetzy V(¢, €') =Vv(¢’, £) =v(- ¢, - ¢’). By the char-

acteristics £ - £/ = + 1 the first factor is transfoxmed
into expression (12), while the variable Z of the function
W is zero, so that W(0) = 1. The area of determination

c | oo-




[£, €'] < 1 of the function V(Z, <’) naturally breaks -nto
three parts in which the function W (Z) can be determined by -
difference (Figure 2,), In the first place it allows us
to distinguish the areas in which £ and £’ have the same
signs, from areas in which the signs of & anc ¢’ are diff=-
erent. In the second place, for the characteristic

g’ =¥ =1 at points £ =0 and £ = -1 the Riemann function
is not snalytical and since the properties are distributed
along the characteristics, it is possible to anticipate
breaking of the analytical abiliiy of the Riemann function .
at the characteristics £/ + & = + 1 which separate at the
part of the area where the signs of ¢ and ¥’ are alike.
Therefore we consider three zones :

Ifg -8 <1< g +g'],
IT g +¥') <1, g8’ >0, -
11T |¢ - gl <1, g+ e’ g1, 88’ <0,

- Substituting (15) in (11), in zone I we obtain for W(Z)
- the equation ) R :

Z(Z - 1)2W" + (Z - 1)(22 - 1)W' - 29 = O,

In adcition it is necessary to choose a solution of the.
equation, satisfying the condition W(0) =1, In zone II
for W(z) such an equation is obtained and it is necessar
to chocse a solution bordering on the first zone Z =1
coincident with the solution for the first zone, and more-
over satisfying the condition W(» = 1) emerging from com=
parison of formulae (14) and (15). In zone III for W(Z)
the equation obtained is: :

Z3(z - 1)W* +2(22 - 1)W' + ¢3W = 0,

the solution of which must satisfy'the conditions W(- ®) = 1
and W(Z) = 0(27%) with Z = - 0, Using the formulae for the
analytical continuation of the hypergeometric functions we
_obtain . . :

11~

ke o




m-:rm e
i  (:).' |

: €
(1 = 2)2F1{e, ¥ + €5 15 2) in zone I,

frz 1+ ¢ 1 01 = 2¢) e, €3 1 + 2¢; &gl |
rza-’zfr. :‘ET]—‘“ ) aFa(* 2 = ) :
- - 1\ "€
w{z) = * T :g T 'PLE'T(Z'"" zl-';.(- €, ~&; 1 - 2; in zone II,
©oD(t +e)e - - Z_ -1
: r'c1('+ SeT" Z)=F*< € =& 1 - 25 22-%) {1 zone III.

eess{16)

Here zF:{z, B, v; Z) is the symbol of the hyoergeo-

‘metric function, Formulae (i5) - (16) specify the deter-

mination of the Riemann function quoted in reference [11].
Together with formula (13) they zive a solution of equation
(6) for the initial conditions (7). -According to (13) this
solution with {<1 - ¢ is equal to zero; at the point

¢ =1 -1 (the lower diffusion "front" of the substance) it

-

has a discontinuity of value ezV(i - 1, =)i in the interval

1 -= S (<1 + 7 it ls determined by uha formula

N\ 3/

=4e ] .
% s A P S '
1 ~2e. ./ ¢ V{Z &) av(s, ¢) .
rg ]G ) - =R - v,
1/
while at the ovint ¥ = {1 + T (the upper diffusion "front® of

the substance) it has a d;scon»;nulty of value e;V(— + 1 )
and w;th T 21+« is equal to uaity.

The latter is demonstrated in the following Way. ~ When
21 +< formula (13) is superseced by the formula :

vig, ©) = (&, £ - 1) WE L+ 1)

T (,, ) v e)

C/‘F'L [ngrTV( » f ) 8¢’ ]d';'

-12-




‘Differentiating this cquation for ¢ and using condi-
tions (12) and equation (11), we are convinced that ,
oY z) = L - - \

gr “L = 0, At the same time W{¢, 0) = 1 when € > 1,

- Consequently ¥({, <) when { 2 1 + ¢ similarly equals unity,

So far we have not touched upon the question of extreme
conditions for conceatration of the diffusing substance at
the earth's surface, VWhea v < 1 this questiicn does not
arise, since the substance issuing from the scurce has not -
yet reached the earth's surface, The solution of (13) is
here the probability distribution, The presence of rapid
changes in the function ¥({, ) at the poinis { =1 + ¢
implies that at the "{zonis", which are being propagited
from the source upwards and downwzrds, there exists a finite
quantity of substance: at the “front" which is moving upe-
wards tnere is a proportion of %he substance ez{1 - ¢)°F,

- diminishing with time according to-a power law; at thz

- "front" which is moving downwards, there is a proportion of

the substance e€2(1 - 7%8, diminishing to zero with the

" approach of the "fronit" fowards the earth‘®s surface (pro-
gress of the particles towards the earth's surface is diffi-

cult since the frequency of distribution is increasing hexe

without restriction). :

When 7 > 1 the solution obtzined does not show the
probability of distribution and consequently does not des=-
. cribe in-any way the distribution of the substance. For

proof of this 1t is sufficient o determine the value Y(0, <)

when v 2> 1 which is completely specified by the function
v{o, g’} =Vv(g, 0)., Appilying (i3) and (14) coavinces us
that ¥(0, %) = o with © = », which proves the stztement put
forward, It is possible to shew %that equation (8) has no
solution describing the distribution of the substance for an
iastantaneous point source, for which the diffusion of the
substance would be through the pariicular point ¥ = 0 or for
material accumulating at that point. This situation is
completely analagous to the position for a parebolic equa-
tion of diffusion with diffusion coecfficient k(z) = wv¥Fz
viaich also has no solutions describing the distribution of
the substance uncer the conditions of complete or partial
absorption of substance at the point z = 0, At the same
time we can obtain a physically understandable solution of
equation (6) when < > 1 by introducing the condition of
reflection ¢f the diffusing parxticles from the earth's sur~.
face, For that it is necessary to add to the solution of
(13) a solution corresponding to the virtual source of
diffusing substance at the point z = -« h, i,e, satisfying
the initial conditions : ‘ -

qi(z, 0) = g2b(z + h). qz(z, O) 5.515(2 + h,,

!
L elo-

S i e My o=t o e- o - e ——

~e




which can be re-written in the form

C o ek) = El((. 1), YK) = (er - e2)8(K + 1),

Applying consicderations of symmetry, it is easy to see
chat under conditions of reflection the probability distri-
butiaon differing from zero only when ¢ 2 0, should be dutez=
mined by the formula Y({, =) - ¥(- ¢, %) where v, =, is
the function determined akbove. Viith © € 1 this distribu~"
tion does not differ fzom ¥Y(¢, ©) but with = > 1 a diffe-
rence will only occur in the region 0 £ € < © = % in which
the influence of a "reflected wave" is felt, At the same
time the portion of the diffusing subsiance at the “front
of the reflected wave" equals zero, -

The resulis obtainad permit us %o make -calculations
relating to the solution of concrete nroblems, As an :
example let us calculate the concentrztion of the substance -
at the earth's surface with an instantancous point scuxzce at
height h discharging all the substacnce upwards., Assuming .
that the substance is not absorbed by the earth's surface
and applying the preceding Ieasoning, we must suppose (when
~ 2113 that:=~ , ' : : e

R R )

.where Y(£, t) is determined by formula (13). The last
expression can be put into the form : )

. ’ i ’ '
] . . Q(O, t) = ﬁ}m?[k li’cf (El)g‘gr'- ﬂ:“‘—%'lf(%)]p

where

. -. . s-x

ety < OV (+ 0, £’ av(- 0, 8’) _ =8
Fe) < Bl Mt - srrfl e
After simple calculations we obtain: '

. 28 : - ¢ .
RS 3 e w2, e i)

.-14- t.
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ame result is obtained from this forme-
as il should be,
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T
along the wind directlion we may
according to the formula

«© - e
~
H
H

8i{x - ur)&-

qlx, v, 2)

ot_

[\

£,
o
.
C

S

Here x, y are the horizontal .o-ordiaates (x is direc=-
tion of w*nc), and k the cocificient of norizontal mixing
ia the dircction y. In particular, applylug (17), we
obtain a formula for the concentration from the chimney at
the earth's surface in the directioa of the winds

| JAvE 1 (g - 1) Av¥x
“gi{%x, 0, O v/“ T = ==~5
G (x, ) &5 J 7w 7 EETET f =Rt 2t
¢ . (18)
LI IR 2R J

The abzcissa of the maximun of this function is pro-
portional to h, aQ? the value of the maximum is inversely
proporiional o hY(4~°. F;gu:e 3 shows the groph of thn unx-

.- e m it -l . s \& /- 4 e- : - _3
versal funciion £7°(2 - 1)°{(g + 1) when & = 4, 1, 2

f o s " - {w
cihisracterising the form of the concentration distribution
at the earth's surface in the wind direction.

Let us now briefly consider ithe case where the diffus-
ing substance 1s absorbed by the earina’s surface. In this
case the extreme condition should be formulated not
with 2z = 0 but with z = z, ?IOuhuAQSS le “g»h) Reckoning
the hgight z from the planb z, we must suppdse

o
Se ZooF[Z[» SO that the .unytlon Y(C <) must be deter-

62};, 62\7 . _ : 9\{ _ B Z .
7 " 557 T Frer e =0 G = >0 . (19)

The Riemann function of this equaticn will take the
form . '




© g

O L ‘ o P

AT reem |

.

b

(:> L o o )

. The determination of this function and solution of
equation (19) under the given initial and extreme conditions

can be achieved in an anilogous mannzr to that stated above.

, 3. Diffusion in a Thermslly Heterogeneous Ground
. Layer of Ai:

: A turbulent system in a thermally heterogeaeous
.ground layer of air is characterised by three dimensionsal
parametexrs: v¥, Eg; and %—, waere q is the vertical tur-.
. 0
bulent stream of heat; o and p, the specific heat and.
density of air; g, thec accelerating force of gravity; and-
To, the normal temparature of the ground layexr of air (see
for example [3]). From the indicated paramsters it is
possible to form a length scale :

@

L = -——(y-—-)-

(-
T

5

x

O
©

In accordance with considerations of the dimensional
parameter of turbulence.u and a, ozcurring in the eguation
of diffusion (3}, it is possible to write them in the fozm

_. 5% Z\- - hz-v* pA
v =wreu(f), a = 5 Fea(f), (20)

where ¢1 () and 92 () are certain universzl functions. 1In
the particular case of indifferent stratification ofzthe air
scale L becomes infinitely large while the variable 7 of the

>

functions ©1 and o2 b2comes z2ro, so that for agreement with
formula (4? (coxrected for a2 system with indiffereat strati-
fication) we must assumne ¢1{0) = 92(0) = 1,

It i1s possible to determine the function ¢, (¥) by
making use of the eguilibrium eguation of turkuleat enerzgy
(see for example [4?) wnich for the coefficient of turbue.
lence k leads to the expression ' .

IO D a6




N4
o
. Ri

ko= vel(1 - ) ceeo(21)
© '

where 1 is the scale of turbulence [mixing length in the

Prandtl sense), Ri is the Richidrdson number and Ri_, its

1.
critical value. The value ¥ i1s pr

oporticnzl to the m=2an
sguare velocity of the turbu uctuetions, i.e. kK o Ke

\
. - T
Hence, applying the condition ¢:(0) = 1, we obtain

XD el (22)

In order to determine the functi
-the stiszady-state solution of equatiio

2({), we examine
>
from the canditions

wnich arises

. _ T
G = const, 2Q = - uzZuq,

C) : The right-hand side of the last equation may e re-
' written in the approximate form - uagi, so that the function
w(2) changes significantly more slowly than g(z). The idea
of this simplification is to ignore the vertical stream of
cdiffusing substance which occurrs when the conceatration
gradient of the substance 1s zero and which is « consequence
. of a difference in the intensity of turbulent fluctuations
- of velocity in different lavers of air (the presence of such
- : a stream of substance is analogous to the effect of thermal
diffusion). With the indicated simplification, by applying
(20) we can write a steady-state solution of eguations (2)

in the form
q...0_ 2:.%_24%.
z AVFZ Qf z/L}*

oo

A»cordlng to the theory of s;rilarlty for a statlonary
turbulent system in a thermally heteroge eous ground layer
of air (see for example refereaze [3]) it must be that

o. . arn

EY TN
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' o [./z 24\
22) Z _._;:[:<7a> - <7~ J
qf ‘ q( :) e T AN D
where f£(¥) is & universal funciion which is lin%ed wi th the

Richardson number by the relatien

Ri_ - _“__\.
Ri /(Z *
“p )
Conseguently we obtain
r 1% 1%
=1 - = ] { £/ [ - = ’
L - wls p2(C) = ¢£/ () | 1 - Fry )%

. fnu-(23)
and equation (3), by calculations using equations (20) .and
193\ begcomas . . :
\o.- Iy ~> "o

4 9 4 oy a2y N 1 Y%y
[ - rrley) &2t - 7T v - 5 - 2= Q1 - prer) B2 2 00 eene(29)
Side
when the dlmenSLOnless variables ¢ = %, T =:&%T¥ are intxo-
duced,

For the analysis of this equ§tion it 15 essential to
know the nature of the function £’/ (), Ve use the equations
of motion and flow of heat for s steady-state system in the
ground layer of air, which have the fozm

kdU (v¥)2, ‘= . g
cpp°

Here U and T are the avera

K = mepam
and « = Ric*.
Richardson nunber we obtain k = xv¥L/Z’(¢). sSubsiituting
this formula in (21) and determining 1 (in the czse cf stable
stratification to wnl»h our present d;scuss*on is confined)

-{18=

ge velocity and temperaiure,

From these equations and determinztion of the
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e find from

1 ( =i >;‘%
= Azl i = 5= ’
dlzp
[as used in the paper .4, (in which foo concurzrence with
experimental dito-we should put 3 = &)1 for £Y{K) the alge-,
braic expression ' .
y - “ -3//
i ' =
= = {17 -~ = i £
T () “ T (Cj4.
From this eguation it follows %hat with ¢ < 1 then
2t 1
€) = 7 75+ 0K) and with { » » asymtotically
F . - [ s s .
T(g) ~ 1 + 75/ to wnich the *o;-oh¢ng liriting formulae
correspor for the functions (23) :
7 a ! 1 : 1
\'.'01'\‘9:\. 7: « f]:)z I‘C\ = 1 - “7{- [} (C) =2 1 -+ —<o
’ “\' t4d Dladi ] o RV -
nen(—»wm‘({)‘v(dz 0z (/6
Thus for smell values of L the Tunciions gui-and @z are
extremaly close to unity and the eguzstion for ¥ takes the
same Torm as in the case of indififegrent stretifica<ion,
Viith ¥ = «@ the fluctuatiion velocity (and conseguently the/
velocity of cisparsion of the subsiance) decreases av {° 12
. .h-
walle the freguency of digpersicn cecrezses as { ©; the
.2 , .
“cocefficient of diffusion" %E tends towards a constant value,
In order o establish the parameters of equation (24),
w2 introduce instead of ¥ a new independent veariable

a/ao~

4L = —<1 - 11 - -71—71 ]

HYAN

-19-

- ;2f1 il =
[

3

H l{).n

-32/304
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which for small values of ¢ hos e foxn =~ {, and for
large velues of € crows cs {=C, Thea egustion (24) will be
written in the {fozrxm
D D e
o~ <Y o_n/,)cg =0
- e+ SR o R S fo g . .
on, 3T srion eee. (2¢)
roreover, ihe function g(r) is parametrically repre-
sented by the formulze
(rn} = YA £y x5£0) 20 < =720 .
g ‘) =3 X n 3\' - A --‘—7&¢ - A “‘),OS‘S’.

For small values of n, ¢ , and for large values
4

7 \\"'1-"‘ N . ~ e ~
) *7 . A Graph of the func-

/
of 7 asympiotically g(n) ~ (757 ;
tion g(n) is shown in Figure 4.
~ Integration of cequaticn (26) is pcssible by the use of
methods oOf appioximation.

USSR Accdemy of Sciences Received

Institute of Physics of ithe Atmosphere 13 July 1956.
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FICURE 1, THZ SHAPS CF THEZ VERTICAT PENTITES OF CONCENTRATION TOR
CONTINUDYS LINE SOURCE AT CROUND [EVEL
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FIGURE 4. THE CCEFFICIENT cir) IN EQUATION (26)
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